Tuesday, May 31, 2016

Carboxylic Acids - SlideShare

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Thank you for reading article Carboxylic Acids - SlideShare

How many atoms are in Hydrochloric acid - Answers

A compound consisting of hydrogen and chlorine. Hydrochloric acid is secreted in the stomach and is a major component of gastric juice. A clear, colorless, fuming, poisonous

Monday, May 30, 2016

:,
Oleic-acid-skeletal.svg
. C18H34O2
282,46 /
0,895 (18°C, /3)
( ·): 25,6 (30°C)
. .16,3 °C
. .360, 225-226 10 . . °C
3 (175°C); 10 (225°C); 15 (232°C); 100 (286°C) ...
 
:
:
:
:
( D- ): 1,4582 (20°C)
.  CAS112-80-1
PubChem445639
.  EINECS204-007-1
SMILES
InChI
. EC204-007-1
RTECSRG2275000
ChemSpider393217
(25 °C, 100 ), .

(-9- ) 3(2)7=(2)7  . -9 .

, , , , , .

, , . , . .

( ). , , , , .

-, -    ( , ). ( 44 °C) ( ) : , , , , , , ( ) .

  : (4142 %), (3744 %), (30 %), : (8589 %), (7084 %), (80 %), (Mauritia Vinifera) (79 %), (79 %), (7078 %), (71 %), (6482 %), (6085 %), (60 %), (60 %), (5975 %), (5874 %), (66 %), (5575 %), (5154 %), (5067 %), (54 %), (Carapa guianensis) (50,5 %), (50 %), (50 %), (48 %), (46 %), (46 %), (Calodendrum capense) (45 %), (44,571 %), (4351 %), (44 %), (43 %), (42 %), (4045 %), (4062 %), (2230 %), (38 %), (3743 %), (3742 %), (3547 %), (3545 %), (3436 %), (30 %), (2442 %), (Garcinia indica) (3042 %), (Shorea stenoptera) (3238 %), (3238 %)[1].

, . , , , - )   , , .[2]. .

( ), , , , , . . .

  1. ,
  2. - // « » . . ., .: , 1983

  • « » . . ., .: , 1983 . 407
  • . ., . . « » .: , 1977 . 170


«https://ru.wikipedia.org/w/index.php?title=_&oldid=78446290»
Thank you for reading article

Ácido elaídico - Wikipedia, a enciclopedia libre

Ácido elaídico

Na Galipedia, a Wikipedia en galego.
Ir a:navegación, procura
Ácido elaídico
Identificadores
Número CAS112-79-8
PubChem637517
ChemSpider553123
DrugBankDB04224
KEGGC01712
ChEBICHEBI:27997
ChEMBLCHEMBL460657
Imaxes 3D JmolImage 1
Propiedades
Fórmula molecularC18H34O2
Masa molecular282,46 g/mol

Se non se indica outra cousa, os datos están tomados en condicións estándar de 25 °C e 100 kPa.
Referencias

O ácido elaídico ou ácido trans-9-octadecenoico [1][2] é un ácido graxo insaturado trans, que é a principal graxa trans que se encontra nos aceites vexetais hidroxenados e aparece en pequenas cantidades no leite caprino e bovino (aproximadamente o 0,1% dos ácidos graxos que conteñen) [3] e nalgunhas carnes. É un isómero xeométrico do ácido oleico, sendo este último a forma cis. O nome da reacción chamada elaidinización procede deste ácido ; dita reacción consiste en alterar a orientación da configuración en torno aos dobres enlaces de cis a trans, o que incrementa o punto de fusión e a duración das graxas.

O ácido elaídico incrementa a actividade da proteína transferente de colesteriléster (CETP), a cal á súa vez eleva a cantidade de colesterol VLDL e diminúe a do colesterol HDL, o que pode favorecer a aterosclerose.[4]

Utilízase comercialmente na preparación de oleatos e locións, e como solvente farmacéutico.[5]

Notas

  1. CHEBI
  2. ChemSpider - Elaidic acid
  3. Alonso L, Fontecha J, Lozada L, Fraga MJ, Juárez M (1999). "Fatty acid composition of caprine milk: major, branched-chain, and trans fatty acids". J. Dairy Sci. 82 (5): 87884. doi:10.3168/jds.S0022-0302(99)75306-3. PMID 10342226. 
  4. Abbey M, Nestel PJ (1994). "Plasma cholesteryl ester transfer protein activity is increased when trans-elaidic acid is substituted for cis-oleic acid in the diet". Atherosclerosis 106 (1): 99107. doi:10.1016/0021-9150(94)90086-8. PMID 8018112. 
  5. PubChem compound - Elaidic acid

Véxase tamén

Ligazóns externas

  • Sommerfeld M. Trans unsaturated fatty acids in natural products and processed foods. Prog Lipid Res. 1983;22(3):221-33. PMID 6356151. [1]. Graxas trans na natureza e nos alimentos.
Traído desde "https://gl.wikipedia.org/w/index.php?title=Ácido_elaídico&oldid=3900308"

ANNEX IV: Exemptions from the obligation to register in

EINECS N°

Name/Group

CAS N°

200-061-5 D-glucitol C6H14O6 [TOP] 50-70-4 200-066-2 Ascorbic acid C6H8O6 [TOP] 50-81-7 200-075-1 Glucose C6H12O6[TOP] 50-99-7 200-294-2 L-lysine C6H14N2O2))[TOP] 56-87-1 200-312-9 Palmitic acid, pure C16H32O2[TOP] 57-10-3 200-313-4 Stearic acid, pure C18H36O2[TOP] 57-11-4 200-334-9 Sucrose, pure C12H22O11[TOP] 57-50-1 200-405-4 -tocopheryl acetate C31H52O3[TOP] 58-95-7 200-432-1 DL-methionine C5H11NO2S[TOP] 59-51-8 200-711-8 D-mannitol C6H14O6[TOP] 69-65-8 201-771-8 1-sorbose C6H12O6[TOP] 87-79-6 204-007-1 Oleic acid, pure C18H34O2[TOP] 112-80-1 204-664-4 Glycerol stearate, pure C21H42O4[TOP] 123-94-4 204-696-9 Carbon dioxide CO2[TOP] 124-38-9 205-278-9 Calcium pantothenate, D-form C9H17NO5.1/2Ca[TOP] 137-08-6 205-582-1 Lauric acid, pure C12H24O2[TOP] 143-07-7 205-590-5 Potassium oleate C18H34O2K[TOP] 143-18-0 205-756-7 DL-phenylalanine C9H11NO2[TOP] 150-30-1 208-407-7 Sodium gluconate C6H12O7.Na[TOP] 527-07-1 212-490-5 Sodium stearate, pure C18H36O2.Na[TOP] 822-16-2 215-279-6 Limestone
A noncombustible solid characteristic of sedimentary rock. It consists primarily of calcium carbonate))[TOP] 1317-65-3 215-665-4 Sorbitan oleate C24H44O6[TOP] 1338-43-8 216-472-8 Calcium distearate, pure C18H36O2.1/2Ca[TOP] 1592-23-0 231-147-0 Argon Ar[TOP] 7440-37-1 231-153-3 Carbon C[TOP] 7440-44-0 231-783-9 Nitrogen N2[TOP] 7727-37-9 231-791-2 Water, distilled, conductivity or of similar purity H2O[TOP] 7732-18-5 231-955-3 Graphite C [TOP] 7782-42-5 232-273-9 Sunflower oil
Extractives and their physically modified derivatives. It consists primarily of the glycerides of the fatty acids linoleic, and oleic. (Helianthus annuus, Compositae).[TOP] 8001-21-6 232-274-4 Soybean oil
Extractives and their physically modified derivatives. It consists primarily of the glycerides of the fatty acids linoleic, oleic, palmitic and stearic (Soja hispida, Leguminosae).[TOP] 8001-22-7 232-276-5 Safflower oil
Extractives and their physically modified derivatives. It consists primarily of the glycerides of the fatty acid linoleic (Carthamus tinctorius, Compositae).[TOP] 8001-23-8 232-278-6 Linseed oil
Extractives and their physically modified derivatives. It consists primarily of the glycerides of the fatty acids linoleic, linolenic and oleic (Linum usitatissimum, Linaceae).[TOP] 8001-26-1 232-281-2 Corn oil
Extractives and their physically modified derivatives. It consists primarily of the glycerides of the fatty acids linoleic, oleic, palmitic and stearic. (Zea mays, Gramineae).[TOP] 8001-30-7 232-293-8 Castor Oil
Extractives and their physically modified derivatives. It consists primarily of the glycerides of the fatty acid ricinoleic (Ricinus communis, Euphorbiaceae).[TOP] 8001-79-4 232-299-0 Rape oil
Extractives and their physically modified derivatives. It consists primarily of the glycerides of the fatty acids erucic, linoleic and oleic (Brassica napus, Cruciferae).[TOP] 8002-13-9 232-307-2 Lecithins
The complex combination of diglycerides of fatty acids linked to the choline ester of phosphoric acid.[TOP] 8002-43-5 232-436-4 Syrups, hydrolyzed starch
A complex combination obtained by the hydrolysis of cornstarch by the action of acids or enzymes. It consists primarily of d-glucose, maltose and maltodextrins.[TOP] 8029-43-4 232-442-7 Tallow, hydrogenated[TOP] 8030-12-4 232-675-4 Dextrin[TOP] 9004-53-9 232-679-6 Starch
High-polymeric carbohydrate material usually derived form cereal grains such as corn, wheat and sorghum, and from roots and tubers such as potatoes and tapioca. Includes starch which has been pregelatinised by heating in the presence of water.[TOP] 9005-25-8 232-940-4 Maltodextrin[TOP] 9050-36-6 234-328-2 Vitamin A[TOP] 11103-57-4 238-976-7 Sodium D-gluconate C6H12O7.xNa[TOP] 14906-97-9 248-027-9 D-glucitol monostearate C24H48O7[TOP] 26836-47-5 262-988-1 Fatty acids, coco, Me esters[TOP] 61788-59-8 262-989-7 Fatty acids, tallow, Me esters[TOP] 61788-61-2 263-060-9 Fatty acids, castor-oil[TOP] 61789-44-4 263-129-3 Fatty acids, tallow[TOP] 61790-37-2 265-995-8 Cellulose Pulp[TOP] 65996-61-4 266-925-9 Fatty acids, C12-18
This substance is identified by SDA Substance Name: C12-C18 alkyl carboxylic acid and SDA Reporting Number: 16-005-00.[TOP] 67701-01-3 266-928-5 Fatty acids C16-18
This substance is identified by SDA Substance Name: C16-C18 alkyl carboxylic acid and SDA Reporting Number: 19-005-00.[TOP] 67701-03-5 266-929-0 Fatty acids, C8-18 and C18-unsaturated.
This substance is identified by SDA Substance Name: C8-C18 and C18 unsaturated alkyl carboxylic acid and SDA Reporting Number: 01-005-00.[TOP] 67701-05-7 266-930-6 Fatty acids, C14-18 and C16-18-unsaturated.
This substance is identified by SDA Substance Name: C14-C18 and C16-C18 unsaturated alkyl carboxylic acid and SDA Reporting Number: 04-005-00[TOP] 67701-06-8 266-932-7 Fatty acids, C16-C18 and C18-unsaturated.
This substance is identified by SDA Substance Name: C16-C18 and C18 unsaturated alkyl carboxylic acid and SDA Reporting Number: 11-005-00[TOP] 67701-08-0 266-948-4 Glycerides, C16-18 and C18-unsaturated.
This substance is identified by SDA Substance Name: C16-C18 and C18 unsaturated trialkyl glyceride and SDA Reporting Number: 11-001-00.[TOP] 67701-30-8 267-007-0 Fatty acids, C14-18 and C16-18-unsaturated., Me esters
This substance is identified by SDA Substance Name: C14-C18 and C16-C18 unsaturated alkyl carboxylic acid methyl ester and SDA Reporting Number: 04-010-00.[TOP] 67762-26-9 267-013-3 Fatty acids, C6-12
This substance is identified by SDA Substance Name: C6-C12 alkyl carboxylic acid and SDA Reporting Number: 13-005-00.[TOP] 67762-36-1 268-099-5 Fatty acids, C14-22 and C16-22 unsaturated.
This substance is identified by SDA Substance Name: C14-C22 and C16-C22 unsaturated alkyl carboxylic acid and SDA Reporting Number: 07-005-00[TOP] 68002-85-7 268-616-4 Syrups, corn, dehydrated[TOP] 68131-37-3 269-657-0 Fatty acids, soya[TOP] 68308-53-2 269-658-6 Glycerides, tallow mono-, di- and tri-, hydrogenated[TOP] 68308-54-3 270-298-7 Fatty acids, C14-22[TOP] 68424-37-3 270-304-8 Fatty acids, linseed-oil[TOP] 68424-45-3 270-312-1 Glycerides, C16-18 and C18-unsaturated. mono- and di-
This substance is identified by SDA Substance Name: C16-C18 and C18 unsaturated alkyl and C16-C18 and C18 unsaturated dialkyl glyceride and SDA Reporting Number: 11-002-00.[TOP] 68424-61-3 288-123-8 Glycerides, C10-18[TOP] 85665-33-4 292-771-7 Fatty acids, C12-14[TOP] 90990-10-6 292-776-4 Fatty acids, C12-18 and C18-unsaturated.[TOP] 90990-15-1 296-916-5 Fatty acids, rape-oil, erucic acid-low[TOP] 93165-31-2

Sunday, May 29, 2016

source d'énergie dans l'organisme : exercice de sciences

source d'énergie dans l'organisme : exercice de sciences physiques de seconde - 256183

Inscription / Connexion Nouveau Sujet

Bonjour, je suis perdu quelqu'un pourrai m'aider dans man DM de chimie ?

Posté par sassoudm chimie 15-04-12 à 14:16

la question est:
les lipides constituent la deuxieme source d'énergie majeure. Ces lipides sont hydrolysés, c'est à dire coupés par l'eau, puis transformés en acides gras. L'un d'eux est l'acide oléique, de formule C18H34O2.
1) écrire l'équation de combustion complête de l'acide oléique.
2)La combustion d'une mole d'acide oléique libère une énergie égale à 11120kj. Quelle est l'énergie libérés par la combustion de 6g d'acide oléique?
Données: m(c)= 12g.mol-1 ; m(o)=16g.mol-1 ; m(h)=1g.mol-1

Posté par sassoure : mécanique cage d'ascenseur 15-04-12 à 14:18

Pourrais tu m'aider aussi efpe ?

*** message déplacé ***

Posté par efpere : source d'énergie dans l'organisme 15-04-12 à 14:34

salut
qui dit combustion complète dit oxygène comme réactif, et eau et dioxyde de carbone comme produit :

C18H34O2 + O2 -> CO2 + H2O

il faut maintenant équilibrer

2 C18H34O2 + 51 O2 -> 36 CO2 + 34 H2O

ça va jusque là ?

Posté par sassoure : source d'énergie dans l'organisme 15-04-12 à 14:38

merci d'avoir répondu oui jusqu'à la je comprends

Posté par sassoure : source d'énergie dans l'organisme 15-04-12 à 14:46

mais je ne comprends pas ce qu'on me demande à la question 2. je ne sais pas ce que signifie 'kj'

Posté par efpere : source d'énergie dans l'organisme 15-04-12 à 15:19

kJ signifie kilo Joule, c'est à dire 1000 joules

il faut commencer par calculer le nombre de moles contenus dans 6g d'acide oléique

Posté par sassoure : source d'énergie dans l'organisme 15-04-12 à 15:31

Donc il faut multiplier la masse molaire de l'acide oléique par 6 ? ensuite multiplier par 1000 joules ?

Posté par efpere : source d'énergie dans l'organisme 15-04-12 à 15:36

Non
si je te donne m(c)= 12g.mol-1 ; m(o)=16g.mol-1 ; m(h)=1g.mol-1 et la formule  C18H34O2 de l'acide oléique, tu es capable de me donner sa masse molaire ?

Posté par sassoure : source d'énergie dans l'organisme 15-04-12 à 15:41

oui on fait C*18+O*2+H*34
et le résultat sera en g.mol-1 non ?

Posté par efpere : source d'énergie dans l'organisme 15-04-12 à 15:48

oui tout à fait

ça te donne donc la masse molaire de l'acide oléique. A partir de là, tu es capable de me donner le nombre de moles correspondant à 6g

Posté par sassoure : source d'énergie dans l'organisme 15-04-12 à 16:02

ah je crois avoir compris il faut donc appliquer la formule n=m/M ; donc 6 divisé par la masse molaire ?

Posté par efpere : source d'énergie dans l'organisme 15-04-12 à 16:03
Posté par sassoure : source d'énergie dans l'organisme 15-04-12 à 16:04

mais à quoi sert 11120kj ?

Posté par efpere : source d'énergie dans l'organisme 15-04-12 à 16:05

on a maintenant la quantité de matière d'acide oléique
et on te dit : La combustion d'une mole d'acide oléique libère une énergie égale à 11120kj

donc tu dois faire quoi à ton avis ?

Posté par sassoure : source d'énergie dans l'organisme 15-04-12 à 16:06

je dois multiplier la quatité de matiere d'acide oléique par 11120kj ?

Posté par efpere : source d'énergie dans l'organisme 15-04-12 à 16:10
Posté par sassoure : source d'énergie dans l'organisme 15-04-12 à 16:11

merci beaucoup pour votre aide

Posté par efpere : source d'énergie dans l'organisme 15-04-12 à 16:12
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !

polyglyceryl-10 oleate 79665-93-3 - The Good Scents Company

IUPAC Name: (Z)-octadec-9-enoic acid; propane-1,2,3-triol

Std.InChI: InChI=1S/C18H34O2.10C3H8O3/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20;10*4-1-3(6)2-5/h9-10H,2-8,11-17H2,1H3,(H,19,20);10*3-6H,1-2H2/b10-9-;;;;;;;;;;

InChI: InChI=1/C18H34O2.10C3H8O3/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20;10*4-1-3(6)2-5/h9-10H,2-8,11-17H2,1H3,(H,19,20);10*3-6H,1-2H2/b10-9-;;;;;;;;;;

Std.InChIKey: AVZIYOYFVVSTGQ-RBWRNIRVSA-N

InChIKey: AVZIYOYFVVSTGQ-RBWRNIRVBE

SMILES: CCCCCCCC/C=C\CCCCCCCC(=O)O.C(C(CO)O)O.C(C(CO)O)O.C(C(CO)O)O.C(C(CO)O)O.C(C(CO)O)O.C(C(CO)O)O.C(C(CO)O)O.C(C(CO)O)O.C(C(CO)O)O.C(C(CO)O)O

Acides gras, triglycérides

French


English



Lipides, Acides gras

Lipids, Fatty acids


Acides gras, triglycérides. Exercice 1 (Réponse). Déterminer la formule brute et indiquer le nom d'un acide gras de 1/ masse molaire égale à 280 g et 2/ un pourcentage en oxygène égal à 11,51% .
Acides gras, triglycérides. Exercice 2 (Réponse). Chercher la formule brute et indiquer le nom d'un acide gras saturé dans les deux situations suivantes:

- Acide gras de masse molaire égale à 284 g.
- Acide gras dont le pourcentage en oxygène est 12,5%.


Acides gras, triglycérides. Exercice 3, (Réponse). Représenter le tronc commun à tous les triglycérides. et donner la représentation semi-développée des trois triglycérides suivants:
-          Trioctadécanoyl glycérol.
-          Tri hexadéca 9 ène oyl glycérol.
-          1,3 dioctadécen 9 oyl 2 hexadécanoyl glycérol.

Ecrire la formule brute et calculer la masse molaire des trois triglycérides ci dessus.


Acides gras, triglycérides. Exercice 4, (Réponse). Un triglycéride homogène a une masse molaire égale à 890 g. Déterminer la nature (nom et formule brute) de cet acide gras.

Acides gras, triglycérides. Exercice 5, (Réponse). Un triglycéride homogène contient 11,91% d'oxygène. Déterminer la formule et le nom de cet cet acide gras.


Acides gras, triglycérides. Exercice 6, (Réponse)

- Calculer l'indice d'iode de la trioléine. L'acide oléique est l'acide octadéc 9 ène oïque

- Une huile végétale contient 30% de trioléine, 60% de tripalmitine et 10% de tristéarine. Calculer son indice d'iode sachant que l'acide palmitique est l'acide hexadécanoïque et l'acide stéarique est l'acide octadécanoïque.


Acides gras, triglycérides. Exercice 7, (Réponse). Un homogénat tissulaire est soumis à une chromatographie sur couche mince de gel de silice utilisant une phase mobile constituée d'un mélange d'hexane-éther éthylique-acide acétique. Parmi les lipides identifiés sur le chromatogramme on note des acides gras, Monoglycérides, Diglycérides, Triglycérides, Cholestérol libre, Cholestérol estérifié et Phospholipides. Shématiser les résultats de la séparation chromatographique.

Acides gras, triglycérides. Exercice 8, (Réponse).Soit le lipide : 1-oléyl-2-linoléyl-phosphatidyl-glycérol (OLP)

- a/ Ecrire la structure développée du lipide OLP.
- b/ Calculer son indice de saponification et son indice d'iode.
- c/ Que donne l'hydrolyse de OLP par la phospholipase C ?
On donne: KOH = 56, H3PO4 = 98 et I=127.

Acides gras, triglycérides. Exercice 9, (Réponse). Parmi ces lipides (A, B, C, D) choisir celui qui présente l'indice d'iode le plus élevé.

Glycérides, acide gras


Réponses
Réponse 1 (Exercice 1)

acides gras saturés

Réponse 2 (Exercice 2)

acide octadécanoïque

Réponses 3 + 4 (Exercices 3+4)

triglycérides


Recherche rapide dans ce site et les sites liés de l'auteur (Fr, Ar, Eng) - :


Sciences et vie, Biochimie



Protéines et Enzymes, Baaziz 2013


Glossaire des sciences de la vie, trilingue (Fr, Ar, Eng) + Préparations Examens et contrôles S1, S2, S3 + DVD introductinon MOOC:

Sciences de la vie. Glossaire


indice iode


Réponses 7 (Exercices 7). Les différents lipides seront séparés selon le critère de polarité. Les lipides les plus apolaires migreront rapidement. Les phospholipides très polaires, ne migrent plus (restent au point de départ, Rf = 0). Les Monoglycérides polaires (deux OH), migrent peu (migration du bas vers le haut). Les Diglycérides et le Cholestérol libre migreront au milieu, au dessus des Monoglycérides, car ils sont moyennement polaires. Les acides gras très légèrement polaires migreront au milieu de la plaque, au dessus des Diglycérides. Etant apolaires, les Triglycérides migreront presque à l'extrémité de la plaque. Etant très apolaires, les esters du Cholestérol migreront avec le front du solvant. Voir le TP chromatographie sur couche mince des lipides (texte et vidéo).


Réponses 8 (Exercices 8).

- a/ Structure développée du lipide OLP:

lipide phosphatidyl-glycerol

-b/ Calcul de l'indice de saponification et de l'indice d'iode du lipide OLP :

1- Le poids moleculaire du lipide OLP : C18H34O2 = 282, C18H32O2 = 280, 2 x Glycerol = 92x2 = 184, H3PO4 = 98, 4xH2O = 72.

PM = (282+280+184+98) - 72 = 772.

Indice de saponification (avec 2 acides gras rentrant dans la saponification): Is = (m KOH*2 / PM)x 10^3. Donc, Is = 57*2*1000/772 = 147,66 mg/g de MG.

Indice d'iode : Ii = (mI2*delta/PM)* 100. Donc Ii= 127*2*3*100/772 = 98,7 g/100g de MG

c- Le resultat de l'hydrolyse de ce lipide par la phospholipase C : détachement du phosphoglycerol du lipide OLP.


Réponses 9 (Exercices 9). C'est l'acide gras (D) qui offre le meilleur rapport 'nombre de liaisons doubles/nombre de carbones' qui donnera l'indice d'iode le plus élevé.
Vidéos (Vidéos sur DVD avec explications dans le livre 'Science de la vie-Biochimie', Baaziz 2012, édité pour la préparation de la transition Secondaire-Supérieur (Ar --> Fr). Soutenir cette action par l'acquisition de cet ouvrage et en même temps appuyer la continuité des services gratuits rendus par le site takween.com au profits de tous les étudiants)

- Acides gras. Structure (narration en Arabe, titrage en Fr):


- Triglycérides, Phospholipides et Stéroïdes (narration en Arabe, titrage en Fr):

 

Thank you for reading article Acides gras, triglycérides

Saturday, May 28, 2016

__

 

     ar/500ml h2sif6
     ar/500ml  hf
     ar/100g c6h6o3
     ar/500 ml  c18h34o2

[ ]
» »
2016/4/9 14:44:18

http://product.11467.com/info/1749380.htm

40

Thank you for reading article __

polyglyceryl-10 oleate 79665-93-3 - The Good Scents Company

IUPAC Name: (Z)-octadec-9-enoic acid; propane-1,2,3-triol

Std.InChI: InChI=1S/C18H34O2.10C3H8O3/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20;10*4-1-3(6)2-5/h9-10H,2-8,11-17H2,1H3,(H,19,20);10*3-6H,1-2H2/b10-9-;;;;;;;;;;

InChI: InChI=1/C18H34O2.10C3H8O3/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20;10*4-1-3(6)2-5/h9-10H,2-8,11-17H2,1H3,(H,19,20);10*3-6H,1-2H2/b10-9-;;;;;;;;;;

Std.InChIKey: AVZIYOYFVVSTGQ-RBWRNIRVSA-N

InChIKey: AVZIYOYFVVSTGQ-RBWRNIRVBE

SMILES: CCCCCCCC/C=C\CCCCCCCC(=O)O.C(C(CO)O)O.C(C(CO)O)O.C(C(CO)O)O.C(C(CO)O)O.C(C(CO)O)O.C(C(CO)O)O.C(C(CO)O)O.C(C(CO)O)O.C(C(CO)O)O.C(C(CO)O)O

heptyl undecylenate 68141-27-5

IUPAC Name: heptyl undec-10-enoate

Std.InChI: InChI=1S/C18H34O2/c1-3-5-7-9-10-11-12-14-16-18(19)20-17-15-13-8-6-4-2/h3H,1,4-17H2,2H3

InChI: InChI=1/C18H34O2/c1-3-5-7-9-10-11-12-14-16-18(19)20-17-15-13-8-6-4-2/h3H,1,4-17H2,2H3

Std.InChIKey: NLMOQNHZOQGLSZ-UHFFFAOYSA-N

InChIKey: NLMOQNHZOQGLSZ-UHFFFAOYAM

SMILES: CCCCCCCOC(=O)CCCCCCCCC=C

Thank you for reading article heptyl undecylenate 68141-27-5

Friday, May 27, 2016

Bioactivity and phytochemical constituents of marine red

Abstract

Seaweeds are potential renewable resources in the marine environment. The antibacterial activity of Jania rubens, Corallina mediterranea and Pterocladia capillacea were analyzed against human pathogenic bacteria. The present study was performed to investigate the phytochemical constituents of seaweeds, such as alkaloids, flavonoids, steroids, terpenoids and phlobatannins. In this study, we estimated phenols, flavonoids, tannins, pigments and mineral contents and determined the hydrogen peroxide scavenging activity, reducing power and total antioxidant activity of various extracts of selected seaweeds. Phytochemicals were extracted from the three seaweeds using various solvents, such as methanol, ethanol, acetone and chloroform. Among the various extracts, the methanolic extract was found to have the highest reducing power and total antioxidant capacity. We evaluated the seaweeds against Vibrio fluvialis, and Pterocladia capillacea was the most effective at controlling its growth. The highest zone of inhibition was recorded in the methanol extract. The chemical constituents of the seaweeds were characterized by GCMS, which showed that they contain organic compounds, such as 1,2-benzenedicarboxylic acid.

Keywords

  • Marine environment;
  • Photosynthetic pigments;
  • Biochemical composition;
  • Mineral

1. Introduction

Since ancient times, macroscopic marine algae has been closely associated with human life and has been exhaustively used in numerous ways as a source of food, feed, fertilizer and medicine, and chiefly used for economically important phycocolloids [1] and [2]. Marine algae contain more than 60 trace elements in a concentration much higher than in terrestrial plants. They also contain protein, iodine, bromine, vitamins and substances of stimulatory and antibiotic nature. The phytochemicals from marine algae are extensively used in various industries such as food, confectionary, textile, pharmaceutical, dairy and paper, mostly as gelling, stabilizing and thickening agents. Seaweeds or marine macro algae are renewable living resources that are also used as food, feed and fertilizer in many parts of the world.

In addition to vitamins and minerals, seaweeds are also potentially good sources of proteins, polysaccharides and fibres [3] and [4]. Recently, Hebsibah and Dhana Rajan [5] studied variations in the chemical constituents of the marine red alga Hypnea valentiae from the Tuticorin and Mandapam Coasts. Dinesh et al. [6] studied the nutritive properties of 20 species of seaweeds from the Gulf of Mannar. Seenivasan et al. [7] screened the antibacterial activity of extracts of marine algae representing Chlorophyta and Rhodophyta collected from the Vishakapatnaam Coast against two pathogens and also tested their ability to inactivate the enzyme penicillinase in vitro. Extracts of marine algae were reported to exhibit antibacterial activity [8] and [9]. Vanitha et al. [10] reported the antibacterial action of nine seaweeds collected from the Kanyakumari Coast against human upper respiratory tract pathogens, which include both gram-positive and gram-negative bacteria.

Kandhasamy and Arunachalam [11] determined the in vitro antibacterial properties of the seaweeds Caulerpa racemosa, Ulva lactuca, Gracilaria foliifera, Hypnea musciformis, Sargassum tenerrimum, S. myriocystem and Padina tetrastromatica collected from Koodankullam, and Tirunelveli against gram-negative and gram-positive pathogenic bacteria. Anitha et al. [12] determined the antibacterial activity of methanol, diethyl ether, acetone and dichloromethane extracts of Padina Boergesenii collected against 10 human pathogenic bacteria. Marine resources are an unmatched reservoir of biologically active natural products, many of which exhibit structural features that have not been found in terrestrial organisms [13]. There are numerous reports on compounds derived from macro algae with broad ranges of biological activities, such as the antimicrobial, antiviral, anti-tumour, anti-inflammatory, and neurotoxic [14]. The present study was performed with three marine seaweeds: Jania rubens, Corallina mediterranea and Pterocladia capillacea red algae. The study was performed with the following objectives: (1) To investigate the preliminary phytochemical constituents present in the three seaweeds. (2) To estimate the biochemical composition and photosynthetic pigments of the selected seaweeds. (3) To analyze the mineral composition of the three seaweeds. (4) To evaluate the antibacterial activity of the three seaweeds. (5) To reveal the chemical constituents in the three seaweeds using GCMS analysis.

2. Materials and methods

2.1. Collection and identification of seaweeds

The studied algal species were collected from the coastal area of Abu-Qir Alexandria North Egypt. Algal samples were cleaned of epiphytes, and necrotic parts were removed. Then, cleaned samples were rinsed with sterile water to remove any associated debris. The cleaned fresh materials were shade air-dried and ground into fine powder, as described by Gonzalez del Val et al. [15]. The samples were identified as, Jania rubens (Linnaeus), Corallina mediterranea (J. Agardh) and Pterocladia capillacea (Gmelin).

2.2. Preparation of seaweed extracts

Ten grams of powdered samples were extracted with 50 ml of solvents, such as methanol, ethanol, acetone and chloroform. The samples were kept in the dark for 72 h with intermittent shaking. After incubation, the solution was filtered through filter paper, and the filtrate was collected (crude extracts) and stored in the refrigerator until further use.

2.3. Gas chromatography and mass spectrometry analysis

Gas chromatographymass spectrometry (GCMS) analysis was performed using an Agilent GC-MC-5975C with a TripleAxis Detector equipped with an auto sampler. The GC column used was fused with silica capillary column (length 30 m × diameter 0.25 mm × film thickness 0.25 m) with helium at 1.51 ml for 1 min as a carrier gas. The mass spectrometer was operated in the electron impact (El) mode at 70 eV in the scan range of 40700 m/z. The split ratio was adjusted to 1:10, and the injected volume was 1 l. The injector temperature was 250 °C, and the oven temperature was kept at 70 °C for 3 min, rose to 250 °C at 14 °C min1 (total run time 41 min). Peak identification of crude seaweed extracts were performed by comparison with retention times of standards, and the mass spectra obtained were compared with those available in NIST libraries (NIST 11 Mass Spectral Library, 2011 version) with an acceptance criterion of a match above a critical factor of 80% according to Musharraf et al. [16].

2.4. Estimation of flavonoid content

Total flavonoid content was determined according to the method of Chang et al. [17]. A one-ml aliquot of each extract was mixed with 0.1 ml of 10% aluminium chloride and 0.1 ml of 1 M potassium acetate. Methanol (2.8 ml) was added and kept at room temperature for 30 min. The absorbance of the reaction mixture was measured at 415 nm. The flavonoid content was expressed in mg/g, and Quercetin was used as a standard compound.

2.5. Estimation of tannin content

Total tannin content was determined according to the method of Julkunen-Titto [18]. Briefly, 50 l of seaweed extract was mixed with 1.5 ml of 40% vanillin (prepared with methanol), and then 750 l of HCl was added. The solution was shaken vigorously and left to stand at room temperature for 20 min in darkness. Absorbance against a blank was read at 500 nm. Catechin was used as standard.

2.6. Estimation of phenol content

The total phenol content was measured using the FolinCiocalteu method of Taga et al. [19]. Extract (100 l) was mixed with 2 ml of 2% Na2CO3 and allowed to stand for 2 min at room temperature. Then, 100 l of 50% FolinCiocalteu phenol reagent was added. After incubation for 30 min at room temperature in darkness, the absorbance was read at 720 nm. The total phenol content of samples was expressed as mg gallic acid per gram.

heptyl undecylenate 68141-27-5

IUPAC Name: heptyl undec-10-enoate

Std.InChI: InChI=1S/C18H34O2/c1-3-5-7-9-10-11-12-14-16-18(19)20-17-15-13-8-6-4-2/h3H,1,4-17H2,2H3

InChI: InChI=1/C18H34O2/c1-3-5-7-9-10-11-12-14-16-18(19)20-17-15-13-8-6-4-2/h3H,1,4-17H2,2H3

Std.InChIKey: NLMOQNHZOQGLSZ-UHFFFAOYSA-N

InChIKey: NLMOQNHZOQGLSZ-UHFFFAOYAM

SMILES: CCCCCCCOC(=O)CCCCCCCCC=C

Thank you for reading article heptyl undecylenate 68141-27-5

Petroselinic acid - Wikipedia, the free encyclopedia

Petroselinic acid

From Wikipedia, the free encyclopedia
Jump to:navigation, search
Petroselinic acid
Petroselinic acid
Names
IUPAC name
(6Z)-Octadec-6-enoic acid
Other names
(6Z)-Octadecenoic acid
(Z)-Octadec-6-enoic acid
cis-6-Octadecenoic acid
cis-6-Octadecenoic acid
Petroselinic acid
18:1 cis-6
Identifiers
CAS Number
593-39-5 YesY
ChEBICHEBI:28194
ChemSpider4444569
EC Number209-789-8
Jmol 3D modelInteractive image
KEGGC08363
PubChem5281125
Properties
Chemical formula
C18H34O2
Molar mass282.47 g·mol1
AppearanceWhite powder
Solubility in water
Insoluble
Solubility in methanolSoluble
Hazards
Safety data sheetMSDS from Sigma-Aldrich
R-phrasesR36/37/38
S-phrasesS26-S36
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Petroselinic acid is a fatty acid that occurs naturally in several animal and vegetable fats and oils. It is a white powder and is commercially available.[1] In chemical terms, petroselinic acid is classified as a monounsaturated omega-12 fatty acid, abbreviated with a lipid number of 18:1 cis-6. It has the formula CH3(CH2)10CH=CH(CH2)4COOH. The term "petroselinic" means related to, or derived from, oil of Petroselinum, parsley. Petroselinic acid is an positional isomer of oleic acid.

Occurrence

Petroselinic was first isolated from parsley seed oil in 1909.[2] Petroselinic acid occurs in high amounts in plants in Apiaceae, Araliaceae,[3]Griselinia (Griseliniaceae)[4] and in Garryaceae.[5] In Picramniaceae, petroselinic acid is accompanied by tariric acid.[6] In addition, petroselinic acid has been found in minor amounts in several fats of plant and animal origin, including in human sources.[7]

The occurrence of petroselinic acid as the major fatty acid is used in chemosystematics as a proof of a close relationship of several families within the Apiales as well as within the Garryales.[8] Besides petroselinic acid, oleic acid has been shown to be present in all cases examined.

Production and chemical behavior

Fatty acids mostly occur as their esters, commonly the triglycerides, which are the greasy materials in many natural oils. Via the process of saponification, the fatty acids can be obtained.

The trans isomer of petroselinic acid is called petroselaidic acid.

In chemical analysis, petroselinic acid can be separated from other fatty acids by gas chromatography of methyl esters; additionally, a separation of unsaturated isomers is possible by argentation thin-layer chromatography.[9]

Uses

Petroselinic acid can be used in cosmetics.[10]

References

  1. ^ ChemicalBook [1]
  2. ^ E. Vongerichten and A. Köhler (1909). "Über Petroselinsäure, eine neue Ölsäure". Chem. Ber. 42 (2): 1638. doi:10.1002/cber.19090420232. 
  3. ^ F. C. Palazzo and A. Tamburello (1914). "Sopra l'acido iso-oleico dei semi di edera". Atti della Accademia Nazionale die Lincei. Rendiconti. Classe di science fisiche, matematiche e naturali 5 (23): 352. 
  4. ^ B. Breuer, T. Stuhlfauth, H. Fock and H. Huber (1987). "Fatty acids of some cornaceae, hydrangeaceae, aquifoliaceae, hamamelidaceae and styracaceae". Phytochemistry 26 (5): 14411445. doi:10.1016/S0031-9422(00)81830-0. 
  5. ^ R. Kleiman and G. Spencer (1982). "Search for new industrial oils". J. A. O. S. C. 59: 29. doi:10.1007/BF02670064. 
  6. ^ M. Tsujimoto and H. Koyanagi (1933). "On Nigaki Oil". Bull. Chem. Soc. Japan 8 (5): 161. doi:10.1246/bcsj.8.161. 
  7. ^ Thomas Stuhlfauth (1984). "Chemosystematische Untersuchungen zur Fettsäurezusammensetzung von Frucht- und Samenölen der Pittosporaceen sowie einiger Arten der Rutales und Araliales, dissertation". University of Kaiserslautern, Germany: 5255. 
  8. ^ T. Stuhlfauth, H. Fock, H. Huber and. K. Klug (1985). "The distribution of fatty acids including petroselinic and tariric acids in the fruit and seed oils of the pittosporaceae, araliaceae, umbelliferae, simaroubaceae and rutaceae". Biochemical systematics and ecology 13 (4): 447453. doi:10.1016/0305-1978(85)90091-2. 
  9. ^ B. Breuer, T. Stuhlfauth and H. P. Fock (1987). "Separation of fatty acids or methyl esters including positional and geometric isomers by alumina argentation thin-layer chromatography". J. Of Chromatogr. Science 25 (7): 302306. doi:10.1093/chromsci/25.7.302. PMID 3611285. 
  10. ^ Kosmetische Verwendung von Petroselinsäure, Patent DE69927466T3
Retrieved from "https://en.wikipedia.org/w/index.php?title=Petroselinic_acid&oldid=688712851"